Till startsida
Göteborgs universitet
Till innehåll Läs mer om hur kakor används på gu.se

Seminarium med Aarne Talman, "Neural Network models of NLI fail to capture the general notion of inference"


Seminarium med Aarne Talman, "Neural Network models of NLI fail to capture the general notion of inference".

Natural language inference (NLI), the task of determining if a sentence is entailed by one or more given sentences, has been a very popular line of research in the NLP community. Due to the popularity and recent advances in neural network architectures, significant progress has been made in NLI research, especially with the introduction of various pre-trained contextual language models, like ELMo and BERT. However there are number of concerns also raised about the current NLI research mostly due to the shortcomings of the current NLI datasets.

In my talk I will introduce the neural network approaches used in NLI and describe our sentence representation architecture, Hierarchical BiLSTMs (HBMP), which has been successful in many NLI tasks. I will give an overview of some of the criticism and negative results in NLI and show how in our most recent experiments even the pre-trained language models fail to generalise across different NLI datasets.

Föreläsare: Aarne Talman

Datum: 2019-03-08

Tid: 13:15 - 15:00

Kategorier: Lingvistik

Plats: Olof Wijksgatan 6, T304

Kontaktperson: Stergios chatzikyriakidis


Till kalendern

Sidansvarig: Stergios Chatzikyriakidis|Sidan uppdaterades: 2016-05-04

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?

Denna text är utskriven från följande webbsida:
Utskriftsdatum: 2019-08-24