Till startsida
Göteborgs universitet
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Marco Baroni "Tabula nearly rasa: Probing the linguistic knowledge of character-level neural language models trained on unsegmented text"

Seminarium

Marco Baroni "Tabula nearly rasa: Probing the linguistic knowledge of character-level neural language models trained on unsegmented text"

Tabula nearly rasa: Probing the linguistic knowledge of character-level neural language models trained on unsegmented text

Work in collaboration with Michael Hahn

As recurrent neural networks (RNNs) have recently reached striking performance levels in a variety of natural language processing tasks, there has been a revival of interest in whether these generic sequence processing devices are effectively capturing linguistic knowledge. Nearly all studies of this sort, however, initialize the RNNs with a vocabulary of known words, and feed them tokenized input during training. We are instead running an extensive, multi-lingual (English/German/Italian) study of the linguistic knowledge induced by RNNs trained at the character level on input data with whitespace removed. Our networks, thus, face a tougher and more cognitively realistic task, having to discover all the levels of the linguistic hierarchy from scratch. Our current results show that these "near tabula rasa" RNNs are implicitly encoding a surprising amount of phonological, lexical, morphological, syntactic and semantic information, opening the doors to intriguing speculations about the degree of prior knowledge that is necessary for successful language learning.

Föreläsare: Dr Marco Baroni

Datum: 2018-10-22

Tid: 13:15 - 15:00

Kategorier: Lingvistik

Plats: Institutionen för filosofi, lingvistik och vetenskapsteori (FLoV)
T116

Kontaktperson: stergios chatzikyriakidis

Kalender

Till kalendern

Sidansvarig: Stergios Chatzikyriakidis|Sidan uppdaterades: 2016-05-04
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?